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Max-Planck-Institut fur Metallfonchung, Institutfa Physik, HeisenbergsuaBe 1.70569 Stuttgart, 
Germany 
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Abstract. Eight schemes for the reconstruction of the m e  aspherical wavefunctions from the 
pseudowavefunctions in a crystal are developed. The schemes are distinguished by four different 
choices of the boundary conditions for the self-consistent solution of the Kohn-Sham equation 
for the true wavefunction in a reconstruction sphere (the boundary conditions being supplied by 
the pseudopotential calculation) and by two different ways of solving the KohnSham equations 
(numerically or by the use of a basis set). The methods are tested by calculating the electric 
field gradients in hexagonal metals and on atoms ne= a vacancy in Na. The comparison with 
all-electron calculations and with experiments demonsmates that the reconstruction schemes 
represent powerful tools for the calculation of elecuic field gradients within the framework 
of the pseudopotential methods for situations with moderate or large electric field gradients. 
Altogether, the reconstruction schemes extend the applicability of the pseudopotential method 
to situations where the nodal structure of the true wavefunctions of the valence electrons in the 
core regime is essential. 

1. Introduction 

The numerical methods of the &-initio electron theory of solids may be subdivided into two 
classes. In the first class of methods the wavefunctions are represented by basis functions 
which are to some extent adapted to the oscillations of the wavefunctions near the nuclei, 
for instance the augmented-plane-wave (AWP) method [l, 21, the Korringa-Kohn-Rostocker 
(KKR) method [3,4], the linear methods (linearized-augmented-plane-wave (LAPW) [5 ,6 ] ,  
linear-muffin-tin-orbital (LMTO) 151, augmented-spherical-wave (ASW) [7] methods) and 
the linear-combination-of-atomic-orbitals (LCAO) methods (see, e.g., [SI). The second 
class encompasses the large variety of pseudopotential methods (see, e.g., [9-12]), which 
produce nodeless valence pseudowavefunctions that are nearly identical with the real valence 
wavefunctions outside the core region, i.e. in the bonding area between the atoms of the solid. 
The tightly bound core states which respond very weakly to the presence of neighbouring 
atoms are described within the frozen-core approximation by the core states of the respective 
free atoms. 

The pseudopotential methods have been most extensively used in the past for the 
investigation of defects in .solids, sometimes in combination with molecular-dynamics 
techniques 1131, yielding highly accurate information about the structural relaxation of 
defect energetics. On the other hand, there are applications (e.g. the calculation of hyperfine 
parameters) where real valence wavefunctions instead of pseudowavefunctions are required 
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and also those where in addition the frozen-core approximation must be abandoned. For 
instance, the magnetic contact hyperfine field at a nucleus is determined by the spin density 
at the nucleus which consists of a vale-nce contribution, which is not adequately described by 
valence pseudowavefunctions, and a contribution due to the polarization of the cores by the 
valence spin density, which is the dominant contribution in many magnetic materials [14]. 
Another example consists of the electric field gradients (EFGs) experienced by nuclei at 
non-cubic lattice sites, for instance close to structural defects. In most cases these quantities 
are mainly determined by the valence charge densities close to the nuclei, whereas the core 
contributions are rather small [IS]. They may be measured by a variety of experimental 
techniques [16] and play the role of fingerprints of the structural defects which may be used 
to identify the defects by comparing the experimental data with the theoretical predictions 
for certain types of defect. Because the pseudowavefunctions do not correctly describe 
the valence charge densities close to the nuclei, calculations of the EFG so far have been 
performed mostly by the LAPW [15], LMTO [17,18], the ASW 1191 and the KKR [ZO] 
all-electron methods. The application of the pseudopotential method was only possible in 
cases where the dominant angular momentum contributions of the wavefunctions of the 
EFG correspond to nodeless valence states, e.g. the nodeless 2p states which determine 
the EFG at atoms near a vacancy in BCC Li, but it has already failed for the case of Na 
[21]. Because forces on atoms can most conveniently be calculated with the pseudopotential 
method, this method is nevertheless extensively used for a study of defects including the 
structural relaxation effects. In order to obtain &om these calculations properties which 
depend on the valence charge densities near the nuclei, one has to reconstmct the real 
valence wavefunctions &j from the valence pseudowavefunctions & j .  In the present 
paper, two methods for such a reconstmction are developed (section 2). The methods are 
tested by comparing the results for the EFGs with those obtained by the full-potential LAPW 
and LMTO methods (section 3). 

2. Formalism 

2.1. Basic idea 

We start with some comments on the pseudowavefunctions &j which are the basic 
ingredients of the reconstruction scheme. The non-local (i.e. angular-momentum-dependent) 
ionic pseudopotentials are constructed in such a way that they reproduce the scattering 
properties of the real ionic core (nucleus plus core electrons) of a free atom nearly exactly 
outside the core radius rC,{ for the single-particle atomic valence wavefunctions of angular 
momentum 1 and single-particle energy E{. The radius rc,f thereby is located between the 
outermost node and the outermost maximum of the real valence wavefunction and is very 
often smaller than the physical radius of the ionic core. The accuracy is only limited by 
the fact that, in many pseudopotential construction methods, smooth pseudopotential cut-off 
functions are used so that the pseudowavefunction is not identical with the real wavefunction 
already at r = rc,{ but approaches the real wavefunction very rapidly for r > rc,f. When 
the so-constmcted ionic pseudopotentials are transferred to a solid, the accuracy by which 
the pseudopotential reproduces the scattering properties of the real potential is limited for 
the following reasons. 

(i) The energy of the valence wavefunction in the crystal is different from E,. for 
which the pseudopotential was constructed. This problem can be reduced, for instance, by 
using norm-conserving pseudopotentials 19-1 11 which guarantee a good transferability of 
the pseudopotential with respect to the energy. 
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(ii) The angular-momentum dependence is taken into account only up to a maximum 
angular momentnm lmox, whereas the wavefunctions contain components of all 1. 

(iii) The unscreening procedure at the end of the pseudopotential construction provides 
only an approximate subdivision [9-11,22] into ionic core and valence states. 

In spite of these problems, the scattering properties of the real ionic cores outside the 
core radius rc,l are generally reproduced with very high accuracy also in the solid, so that 
we assume in the following for simplicity that the pseudowavefunction is exactly identical 
with the true wavefunction outside the cores of radius rc,l and corresponds to the same 
energy. The above-discussed limitations, however, should be taken as a reminder that the 
accuracy of the reconstructed true wavefunctions is principally limited by the accuracy of the 
pseudopotential method, in addition to slight inaccuracies introduced by the reconstruction 
method itself. 

For the reconstruction of the true wavefunctions @kj, the pseudowavefunctions $kj 
which have been obtained from a pseudopotential calculation for the system under 
consideration and the true wavefunctions &j to be constructed are expanded with respect 
to cubic harmonics Kim(+) (r = l ~ l ,  ? = T I T ) :  

where N denotes the number of unit cells. Because according to the above discussion the 
pseudowavefunctions agree with the true wavefunctions for r > rc,l the reconstruction may 
be achieved by replacing the expansion coefficients , f z ( r )  by the coefficients x;(r) inside 
a reconstruction sphere of radius r,,, 2 re.[ for all I (when using smooth pseudopotential 
cut-off functions, a reconstruction radius r,,, slightly larger than the largest rc,t must 
be used). The various reconstruction schemes differ by using different approximations 
for the determination of x z ( r ) .  In the first class of reconstruction schemes these 
expansion coefficients are calculated by solving the aspherical Kohn-Sham [23] equations 
for @kj(r)  inside the reconstruction sphere numerically and self-consistently with the 
pseudopotential replaced by the electrostatic potential of the nucleus plus the core electrons 
and subject to appropriate supplementary conditions supplied by the pseudopotential 
calculation (section 2.2). In the second class of reconstruction schemes the radial functions 
x z ( r )  are represented approximately by a small number of suitably constructed basis 
functions (section 2.3). 

2.2. Reconstruction by a numerical solution of the aspherical KohnSham equations 

In this reconstruction scheme the real wavefunction @kj inside the reconstruction sphere is 
obtained from a self-consistent solution of the Kohn-Sham [23] equation 

Thereby Va,y(r) is the true effective potential of the solid given by the Coulomb potentials 
of the nuclei and the Hartree potential VH and the exchange-conelation potential V, of the 
core electron density nc and the valence electron density n,: 



9204 B Meyer et a1 

Here OL denotes the basis atoms in the unit cell, Z.e the nuclear charge and T the translation 
vectors. Expanding @kj into cubic harmonics K,,(?) according to equation (2) with 
R z ( r )  := r,y,'(r), which gives k '  

the Kohn-Sham equation (3) transforms into a system of coupled ordinary second-order 
differential equations for the radial wavefunctions R z ( r ) :  

(6) 
This set of equations has to be solved self-consistently in an iteration cycle together with 
equation (4), because the valence electron density n, occurring in equation (4) is given by 

k j  = s l ~ j R ~ , , , ( r ) .  

The core electron density n, is given by the superposition of frozen atomic core densities. 
Apart from constant factors, the solutions R z ( r )  of equation (6) which are regular at 
r = 0 are totally determined for each iteration step by &kj .  The constant factors may be 
obtained, for instance (see below), from the values of R z ( r )  at r = r,ec. Because within 
the limitations discussed above the energy of the pseudowavefunction is identical with the 
energy of the true wavefunction for r 2 rrsc, the true wavefunction inside the sphere may be 
constructed from the solution of equations (4), (6) and (7) with the supplementary conditions 
given by fixing &kj and R z  (rrec) to the values obtained by the pseudopotential calculation, 
i.e. R? (rrec) = iz (rrec). 

For a free atom the effective potential V*ff(r)  is spherically symmetric and the set of .. 
coupled equations (6) reduces to decoupled equations for the R / ( r ) .  Then R / ( r )  inside the 
core may be constructed from the solution of the respective equation with the information 
about and R/(rrec) or (d/dr)R;Ir,= obtained by the pseudopotential calculation for the 
atom, as discussed already by Gardner and Holzwarth 1241. For an aspherical potential in 
a solid the whole set of equations (6) has to be considered. 

There are two problems which arise when the general reconstruction scheme outlined 
in this section is transformed to a practical implementation scheme for the computer. The 
first problem is the coupling of an infinite number of differential equations (6). The second 
problem concerns the supplementary conditions and arises from the approximations involved 
in the pseudopotential scheme and from those introduced for the approximate solution of 
the coupled differential equations (6). 

The first problem is removed by assuming that the asphericity of the effective potential 
in the sphere of radius rrec is very weak, so that the effective potential can be replaced by 
the spherically averaged effective potential V$)(r): 

(8) V,,(r)= (U) LJVe&-)dzQ. 
4n 

Due to the orthonormality relations of the cubic harmonics, the set of coupled differential 
equations (6) then reduces to a set of decoupled differential equations 
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It should be noted that the situation is still much more complicated than in the case of 
a free atom, because there the true wavefunction and the pseudowavefunction have a 
well defined angular-momentum character I, so that only one equation of type (9) has 
to be solved. In contrast, the wavefunctions in a solid in principle contain all l , m  
components so that, for each eigenstate (kj), many equations of type (9) must be solved 
with different supplementary conditions, e.g. Rz(r ,ec)  = l?z(rrec) for different I ,  in. It 
would be extremely hard to justify the neglect of the asphericity of the effective potential 
in the reconstruction sphere by analytical argments. Therefore, in the present paper the 
procedure is justified a posteriori by the very good agreement between the EFG obtained 
in the present results and that found in all-electron calculations for a variety of different 
situations (section 3). Obviously, the asphericity of the wavefunctions in the reconstruction 
spheres is nearly exclusively determined by the aspherical boundary conditions, whereas 
the asphericity of the effective potential is negligibly small in the recons@ction spheres 
at least for metallic systems without covalent bonds. The results of section 3 show that 
this general statement is rme, independent of the symmetry of the considered atomic site. 
The agreement with the all-electron data is equally good for the HCP materials and for the 
atoms near a vacancy in Na, which exhibit a different symmetry. In the meanwhile, we 
have also performed calculations of the EFG near a vacancy in AI, using a large supercell 
which contains many different sites with different symmetries, respectively. The agreement 
between the results of our reconstruction method and the data of an all-electron calculation 
is very good for all sites. 

The second problem is related to the approximation involved in the whole procedure. If 
the pseudopotential calculations yielded the exact eigenvalues and the exact eigenfunctions 
for r > r,e,, and if equations (4), (6) and (7) were solved exactly, we couId use any 
combination of two from the following set: 

R:(rrec) = kz(rrec) (10) 

- 
Ekj = E k j  (12) 

as supplementary conditions which determine the radial functions uniquely and all 
combinations would be equivalent. Instead of the energy ~ k j  we can also prescribe the 
logarithmic derivative 

at r = r,,, i.e. 

which, together with the number of nodes of the wavefunction q k j  (in the following we 
understand that equation (14) is always considered in combination with the number of nodes) 
uniquely determines the energy in equation (9). Because of the approximations involved 
in the pseudopotential calculation, however, none of these relations is fulfilled exactly. 
Furthermore, the decoupling of equations (6) via the assumption of a spherically symmehic 
effective potential for r i r, generates small errors in RZ, so that the reconstructed 
wavefunctions (5) calculated with these radial functions do not exactly correspond to the 
true eigenvalues &kj. As a result, the various possible combinations of supplementary 
conditions are no longer equivalent, and the question arises as to which of these combinations 
accounts for the various approximations in a most suitable way. For instance, because when 
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calculating the radial functions from the decoupled equations (9) the asphericity of @kj 
within the reconstlvction sphere arises exclusively from the imposed boundary conditions 
for Rz( r ) ,  it seems to be reasonable to fix the values for (he radial functions and their 
derivatives according to equations (10) and (1 1). Equations (9) then yield slightly different 
values for &kj for different 1,m. Releasing the energy in this way might possibly, to 
some extent, correct the errors introduced by the spherical approximation for the effective 
potential inside the sphere. Finally, it should be noted that during the iteration cycle for 
the self-consistent solution of equations (4). (7), (8) and (9) the true effective potential is 
approached only gradually, and as a result not all supplementary conditions (10)-(12) can 
be fulfilled simultaneously. One of the consequences is that during the iteration cycle the 
number of electrons in the reconstruction sphere is not correct, giving rise to numerical 
instabilities via corresponding errors in the H m e e  potential and the exchange-correlation 
potential. It therefore turns out to be extremely helpful to use the norm conservation for 
each 1, m channel as one supplementary condition, i.e. 

When working with a norm-conserving pseudopotential 19-111 it is guaranteed that for a 
spherically symmetric situation the norm is conserved for each I channel which, however, 
does not necessarily mean that it is conserved also for each 1, m channel in an aspherical 
situation. If we do not use equation (15) as one of the supplementary conditions, according 
to our experience we must at least correct the norm of the total wavefunction in each 
iteration step according to 

in order to avoid numerical instabilities. This is achieved by multiplying all the radial 
functions R z  obtained by the same factor in such a way that equation (16) is fulfilled. 

Altogether, it is not possible to select an optimum from the set of possible combinations 
of two out of equations (9)-(12) in an unambiguous way. It might even be that, for various 
situations, various optimum combinations apply. Choosing one set of combinations yields 
solutions for R z  and &kj which do not necessarily fulfil those equations from (lO)-(lZ), 
(14) and (,15) which were not explicitly used as supplementary conditions. The deviations 
can be considered as a test for the success and quality of the chosen reconstruction scheme. 
In OUT explicit calculations we have used the following combinations of supplementary 
conditions: 

Reconstruction scheme I: logarithmic derivative (14) and norm conservation for each 
1, m channel (15); 

Reconstruction scheme 2: value of R Z  (rrLc) and (dldr) Rz(rrac) according to (IO) and 
(11) (in each iteration step the correct total norm is guaranteed by additionally imposing 
equation (1 6)); 

Reconstruction scheme 3: value of &~.j  (12) and norm conservation for each I ,  m channel 

Reconstruction scheme 4: value of &kj (12) and Rz(r,ec) (10) (in each iteration step 

The numerical effort thereby is considerably larger when releasing the energy than when 

(15); 

the correct total norm is guaranteed by imposing in addition equation (16)). 

fixing the energy. 
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It remains to evaluate the given pseudowavefunction into spherical harmonics (appendix 
A) in order to provide the information on kz(rrec) and (d/dr)R2(rrec) entering the 
su lementary conditions (lo), ( l l ) ,  (15) and (16) and to calculate the effective potential 

KohnSham equations (9) are solved by the predictor-corrector method of Adams, Bashfortb 
and Moulton (see, e.g., [E]). 

It should be noted that VackP and Simunek [26] solved the spherical KohnSham 
equation for the spherically averaged effective potential V$(r) in the reconstruction sphere 
with boundary conditions obtained from the spherical average of the I component of the 
pseudocharge density of the crystal. In this way, they obtained the 'averaged' I-dependent 
node structure of all crystal orbitals, but of course they were not able to describe correctly 
the asphericity of the charge density in the reconsb-uction sphere which is needed for a 
calculation of the EFG. 

Ve;,.(r) PP given . by equations (4) and (8) for each iteration step (appendix B). Finally, the 

2.3. Reconstruction by suitably constructed basic functions 

Instead of calculating the expansion coefficients x z  = R z / r  by integrating the Kohn- 
Sham equations numerically in a reconstruction sphere subject to appropriate supplementary 
conditions, we can also choose appropriate trial functions for x z .  To do this, the x z ( r )  
are represented by a set of radial basis functions &(r): 

Analogously, we can expand , f z ( r )  into a set of radial basis functions &,"(r): 

" 
The sets may be complete, for instance the all-electron atomic single-particle eigenfunctions 
[q5,,n(r)], the atomic pseudowavefunctions {&, , (r)]~or the Bessel functions (jl(lk+ G,lr)) 
used in equation (A3). and they may be even over-complete, for instance a mixed basis 
[27,28] (jr(lk+~Gnlr),  foi(r)], where fol(r) is a function localized at the basis atom under 
consideration for the reconstruction. For practical reasons, however, the representations 
(17) and (18) must be terminated at a fiNte value of n = ?amax. 

In the reconstruction scheme presented in this section' we use the (in principle) 
overcomplete set (jl(lk + Gn[r), fo l ( r ) }  according to equation (A3) for the representation 
of the expansion coefficients , f z ( r )  of the pseudowavefunction. Inside the reconstruction 
sphere we then replace fz by an approximation for ~2 based on a representation of type 
(17) with just two basis functions: 

(19) x z ( r )  = C?,,+[(E) + c2.dm. 
Here, @&E) is the solution of the Kohn-Sham equation 

for a prescribed energy E,  normalized in the reconstruction sphere, i.e, 
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$!(E) is the derivative of @,(E) with respect to the energy, &(E) = (d/dE)@l(E), and can 
be obtained from the equation 

Thereby, V$) denotes the spherically averaged effective potential as in section 2.1, which 
has to be calculated according to appendix B in each iteration step. These two basis functions 
are well known from the AF'W [2,5,6] and the LMTO [5 ]  method. They may be evaluated 
at the centre $1 of the respective 1 band in the crystal, as in the LAPW [5,6] and in the 
LMTO [5] methods, or at the eigenvalue Ekj of the pseudowavefunction &j(r) which is 
considered for~the reconstruction, as in the APW method of Soler and Williams [2].  Note 
that in both cases we just fix the energy for the construction of the two basis functions 
which, of course, does not mean that the energy of the wavefunction @kj  of equation (2) 
reconstructed by the use of equation (19) does coincide with this prescribed energy for 
the basis functions. We therefore can again use any combination of two out of the set of 
supplementary conditions (10)-(12) and (15) to determine the coefficients C z , ,  and C& 
of equation (19). We have used the following combinations of supplementary conditions: 

Reconstruction scheme 5: logarithmic derivative (14) and norm conservation for each 
I ,  m channel (15) (basis functions evaluated at &j ) ;  

Reconstruction scheme 6: value of Rz(r rec )  and (d/dr)Rz(r,sc) according to (10) 
and (I I) (basis functions evaluated at &j ;  in each iteration step the comect total norm is 
guaranteed by additionally imposing equation (16)); 

Reconstruction scheme 7: supplementary conditions as in reconstruction scheme 5 ,  with 
basis functions evaluated at E,; 

Reconstruction scheme 8: supplementary conditions as in reconstruction scheme 6, with 
basis functions evaluated at 6 .  

We now compare the  numerical^ effort of the reconstruction schemes outlined in 
sections 2.1 and 2.2. For reconstruction schemes 1 and 2 or reconstruction schemes 3 
and 4 we must solve C&(21+ 1) = (lmOz + 1)' or I,,,,, + 1 radial Kohn-Sham equations 
(9), respectively, when evaluating the wavefunction up to l,,,=. In the second class of 
schemes (reconstruction schemes 5-8) we must solve lmaX + 1 radial KohnSham equations 
(20) for 41 and ImOz + 1 radial equations (22) for &. For I,, = 2, 3 or 4 this means six, 
eight or ten calculations. Furthermore, if we represent the reconstructed valence charge 
density n,(r)  by N wavefunctions @k, according to equation (7). we have to repeat these 
solutions of single-particle equations N times, both in the first class of schemes and in 
the second class of schemes when evaluating the basic functions at Ekj .  However, if we 
evaluate them always at the centre of gravity Ekj ,  we do not need to do this. Whereas the 
computer time spent for the solution of single-particle equations scales like N(Lmax + 1)' 
for reconstruction schemes 1 and 2, it scales like lmaZ + 1 in the second class of schemes 
when evaluating at El .  It will be shown in section 3 that the accuracy of the calculations is 
nearly unaffected when using El instead of Ekj ,  which is to be expected from the success 
of the LAPW method where the basis functions are also evaluated at E,. Finally, it will 
be demonstrated in section 3 that it is not necessary probably in most cases to iterate the 
solutions of the KohnSham equations to self-consistency during the reconstruction cycle, 
but it is sufficient to perform the whole calculation only for the potential V$) obtained 
from the spherically averaged pseudocharge density or from a superposition of all-electron 
densities of free atoms. 
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It should be noted that in the reconstruction scheme described in this  section the 
pseudowavefunction and the reconstructed wavefunction are not handled on equal footing. 
Whereas the expansion coefficients 22 = E z / r  of the pseudowavefunction are more or 
less exactly evaluated into Bessel functions according to equation (A3), the corresponding 
coefficients ,$ of the reconstructed. wavefunction are approximately represented by the 
two basis functions 41 and &. Van der Walle and Blochl [29] have circumvented this 
problem. They made the expansions (17) and (18) for the reconstructed wavefunction and 
the pseudowavefunction in a completely analogous way using the solutions of the radial 
Kohn-Sham equations for the isolated atom or for the isolated pseudoatom, respectively, as 
radial basis functions &(r) and &,n(r). The expansion coefficients Cz," and are 
identical, because the wavefunctions of the atom and the pseudoatom coincide for r 2 rc,f 
(see section 2.1), and they are determined by a projector formalism. 

3. Calculation of electric field gradients 

In this section the reconstruction schemes 1-8 are tested by calculating the EFGs for regular 
atomic sites in some hexagonal metals and for atoms near a vacancy in Na. 

The electrostatic potential @(T) at site T in the crystal is given by the solution of 
Poisson's equation for the total charge density p ( ~ ) :  

(23) p ( r )  = e Z ~ S ( T  - T - %) - en,(r). 
T.W 

Because the core charge densities are spherically symmetric around the nuclear sites they 
can be replaced by point charges when calculating the potential at a nuclear site. Therefore, 
by the first term of equation (23) we have described the ionic cores, i.e. the combined effect 
of the nuclear charges and the core charges by point charges of size Z r e .  Accordingly, 
the traceless tensor of the EFG at site (Y = 0 in the unit cell, 

consists of an ionic part 

and a contribution of the valence charge density given by 

Because the term in large parentheses in equation (26) may be represented by a linear 
combination of cubic harmonics K z , ~ ,  we only need the 2,  m components of n, ( r )  (see 
appendix C), which may be obtained from equation (7) as 

with the Gaunt coefficients 

s G;:,,,,, = K~~(P)KLM(P)KL,.&(P) d2G 
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for which GTM,L,M, # 0 for 

I IL - L'I < 1 < L+L'in steps of 2 
m = f M f t ' ' .  

Accordingly, the 2m components of nu(?-) are composed of products of angular momentum 
contributions s-d, p p .  p-f, d-d, d-g, etc, whereby the p p  contributions are dominant in 
most cases [15]. 

Because V, is a symmetric tensor, it may be diagonalized, and the components in the 
new reference frame VF are denoted according to 

(30) dins > vdiogl > I V d t q  IK, I / I yy 0 xx I. 
Because V, and VF are traceless tensors, there are only two independent components, 
for instance V$" and the asymmetry parameter 

It should be noted that for all systems discussed in section 3 (hexagonal metals; atoms 
near a vacancy in BCC Na for a 15-atom supercell) the asymmetry parameter is zero 
for symmehy reasons. In the meanwhile we have performed calculations for atoms near a 
vacancy in AI for a larger supercell (the results will be published elsewhere) and there is good 
agreement for the asymmetry parameters on the various sites between our reconstruction 
methods and an all-electron calculation. 

3.1. Hexagonal metals 

In hexagonal systems the electronic density n(r) exhibits the angular-momentum 
components lm = 00, 20, and higher-order components. According to equations (Cl)- 
(C6), there is only one independent component, and the asymmetry parameter v is zero. 

The pseudopotentials for Be, Mg, Ti and Zr are constructed according to Vanderbilt 
[ll]. For Be and Mg a plane-wave basic set, and for Ti and Zr a mixed basis composed of 
plane waves and five localized d orbitals per atom is applied. For Ti and Zr (Be and Mg) 
462 (945) k-points are used in the irreducible part of the Brillouin zone. All calculations 
are performed for the experimental lattice parameters. 

Tables 1, 2, 3 and 4 represent the results for V, for Be, Mg, Ti and Zr, respectively, 
obtained from the reconstruction schemes 1-8. The results found when proceeding with 
the reconstruction up to full self-consistency are compared with the data obtained when the 
procedure is performed for the potential V$j from the spherically averaged pseudocharge 
density or from a simple superposition of all-electron atomic charge densities. In the upper 
(lower) block of each table the results are presented for reconstruction schemes with norm 
conservation for each I ,  m channel (norm conservation only for the total charge). 

Several tendencies become obvious from tables 1-4. 

(i) The values,from reconstruction schemes with norm conservation for each I ,  m channel 

(ii) Reconstruction schemes 3 and 4, which solve the Kohn-Sham equations numerically 

(iii) All the other reconstruction schemes, namely 1 , 2  and 5-8 yield very similar values 

are slightly smaller than those with norm conservation only for the total charge. 

while fixing the energy seem to produce the least reliable results. 

for the EEG. 
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Table 1. Values of V,, obtained for Be by thereconstruction schemes 1-8. The effective potential 
in the reconstruction sphere is determined selfconsistently (fin1 column), by superposition of 
atomic densifies (second column) or taken from the pseudopotentid calculation (third column). 

V, (lo') esu ~ m - ~ )  
Reconstruction 
scheme Self-consistently From atomic densities From osendocharge densities 

1 
5 
7 
3 

-2.094 
-2.094 
-2.094 
-2.003 

-2.170 
-2.170 
-2.170 
-1.950 

-2.070 
-2.070 
-2.070 
-1.976 

-2.138 
-2.136 
-2.136 
-1.912 

-2.110 
-2.110 
-2.110 
-2.026 

-2.193 
-2.191 
-2.193 
-1.985 

Table 2. Same as table 1 for Mg. 

V, (ioL3 esu cm-j) 
Reconstruction 
scheme Self-consistently From atomic densities From pseudocharge densities 

1 
5 

1.112 1.111 
1.112 1.111 

7 1.107 1.106 
3 1.108 1.107 

2 1.117 1.119 
6 1.118 1.119 
8 
4 

1.111 
1.118 

1.112 
1.116 

1.091 
1.091 
1.088 
1.089 

1.097 
1.097 
1.093 
1.106 

Table 3. Same as table 1 for n. 
v,, (10" esu ~ m - ~ )  

Reconstruction .~ 
scheme Self-consistently From atomic densities From pseudocharge densities 

1 
5 

62.17 61.42 62.85 
62.20 60.65 .: 62.88 
61.94 59.92 62.80 
62.35 57.71 64.49 

64.31 62.51 66.06 
64.37 60.95 66.08 
63.84 59.54 65.95 
63.69 51.78 72.70 

(iv) The EFGs are nearly unaffected when evaluating the basic functions 41 and $1 at 
the band centre E1 instead of evaluation at ~ k j .  

(v) The EFGs are also nearly unaffected when performing the reconstruction for the 
potential V$j obtained from a superposition of all-electron atomic charge densities or from 
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Table 4. Same as table 1 for Zr. 

Reconstruction 
scheme Self-consistently From atomic densities From pseudocharge densities 

v, (iox3 ~ S I L  cm-3 

I 107.9 109.2 106.9 
5 107.6 107.8 106.8 
7 106.9 106.5 106.3 
3 111.9 113.7 111.0 

2 119.6 122.5 117.9 
6 119.0 119.9 117.7 
8 117.8 117.6 116.9 
4 123.2 ~ 123.3 17.4.4 

pseudocharge densities. 

Altogether, this suggests that the fast reconstruction schemes 7 and 8 can be used with 
a non-self-consistent potential V$) in all situations which do not seem to be extremely 
critical on physical grounds. 

In table 5 we compare the results obtained by our pseudopotential calculation and by the 
reconstruction schemes with those from a full-potential LAPW calculation [15], from our 
own full-potential LMTO calculation and from experiments. The LMTO calculations are 
performed with the code described in [30]. The sphere radii are given by the muffin-tin radii, 
and the highest core states of the respective free atoms are treated via a second x2-value in 
the same band as the other valence states when performing the calculation for the crystal. 
All the energetically lower-lying states are treated as true core states. The comparison with 
the LAPW and LMTO calculations should be considered with some caution. First, the 
convergence with respect to the number of k-points and with respect to the convergence 
parameters of the various methods is certainly different. For instance, for Mg we used up to 
945 k-points in the irreducible Brillouin zone and still were far from convergence, whereas 
the LAPW result [15] was for 800 k-points. Second, the pseudopotential calculation and the 
reconstruction schemes are for frozen cores, whereas the highest ‘core’ states are treated as 
semicore states in the LAPW calculation and as valence states in the LMTO calculation. In 
most cases, the contribution of these high-lying ‘core’ states is small [15], but it amounts to 
about 10% in Zr. As discussed below, these slight differences in the various calculational 
methods are not relevant when considering materials such as Ti or Zr with moderate or 
large EFGs whereas for the systemsBe and Mg the EFGs are very small so that extremely 
accurate calculations, for instance considerably more k-values, would be required in order 
to obtain consistency with the experiments. Because the primary concern of the paper is not 
to reproduce the experimental data but to demonstrate the agreement between the results of 
the reconstruction method and all-electron methods we did not go far beyond the number 
of k-points used in the FLAPW calculation [U] with which we compare. The comparison 
with experimental data is even more critical. First, the experimentally measured quantity 
is the product of V,, and the nuclear quadrupole moment, which exhibits unceminties in 
its numerical value of typically 10-20%. Second, the calculations are for lattice parameters 
at room temperature, but the results should be compared with experimental data at low 
temperatures, because the effective EFG sometimes strongly depends on the temperature 
[16]. Thereby the temperature variation in the lattice parameters does not correctly account 
for this temperature dependence, as has been demonstrated [31] for the case of Zn. 
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Table 5. Values of V,, for Be, Mg, Ti and Zr as obtained by the rmnshuction schemes 1-8 
(self-consistent potential) in comparison with values from the pure pseudopotential calculation 
without reconshuction, from full-potential LMTO and LAPW calculations and from experiments. 

Be Mg Ti Zr 

Pseudopotential -1.95 0.140 19.6 2.45 
Rec. scheme 1 -2.09 1 .11  62.2 108 
Rec. scheme 5 -2.09 1 .11  62.2 108 
Rec. scheme 7 -2.09 1 .11  61.9 107 

Rec. scheme 2 -2.17 1.12 64.3 120 
Rec. scheme 6 -2.17 1.12 64.4 119 
Rec. scheme 8 -2.17 1.11 63.8 118 

LMTO -1.7 1.2 57 133 
LAPW [15] -2.1 [371 1.6 69 143 
Experiments i 1 . 6  at 77 K [321 i 2 . 0  at 4.2 K [331 i 5 4  at 4.2 K p41 it123 at 4 2  K [351 

Table 6. Values of VCs for atoms close to a vacancy in Na as obtained by the pure 
pseudopotential cnlculation without reconstruction. by the reconstruction schemes and by the 
LAPW calculation. 

Nearest neighbour Next-nearest neighbour Third-n-st neighboui 

Pseudopotential 0.27 0.86 0.26 
Reconshuction schemes 1 4  8.1-8.2 . 8.4-8.5 . . 4 . 1 4 2  
L A W  [31] 8.2 8.3 4.1 

From table 5 it becomes obvious that the agreement of the reconstructed values with 
those from LMTO, LAPW and experiments is satisfactory for Ti and Zr, which exhibit 
moderate to large EFGs. For Be and Mg the values of V, are very small, and there are 
stronger discrepancies among the theoretical results and between theory and experiments. 
For instance, for Mg the reconstructed values agree perfectly with the result of the LMTO 
calculation which is smaller than the V,,-value of the LAF'W calculation (which used even 
fewer k-points) and considerably smaller than the experimental value. For Be the pnre 
pseudopotential result is nearly identical with the reconstructed value, because the dominant 
p p  contribution to V, corresponds to nodeless p wavefunctions. In contrast, for Mg, Ti 
and Zr the p wavefunctions exhibit nodes and therefore the reconstruction is indispensable. 

3.2. V t a n c y  in Na 

We have calculated the EFGs on atoms near a vacancy in BCC Na for a supercell containing 
15 atoms by reconstructing the true wavefunctions from the pseudowavefunctions obtained 
in [21] and, for comparison, by the full-potential LAPW method 136,311, taking into account 
the structural relaxation of the atoms around the vacancy. Because of the small supercell 
size the results cannot be directly compared with experimental data, the emphasis is on the 
comparison between pure pseudopotential results, reconstructed results and LAPW results. 
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From table 6 it becomes obvious that the reconstruction of the true wavefunction from 
the pseudowavefunction is indispensable (see note added in proof to [U]), because the 
3p wavefunctions exhibit a node. Furthermore, there is nearly perfect agreement between 
the reconstructed data and the LAPW data demonstrating the power of the reconstruction 
method for the calculation of EFGs near atomic defects. 
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Appendix A 

In systems with hard pseudopotentials it is often appropriate [27,28] to use a basis set of 
plane waves and a small number of non-overlapping functions vu!,,, localized at the basis 
atoms I& in the elementary unit cells: 

with 

qmlm(~ ' )  = i' fa~(r')i&,(?') T' = ~ T  - T - I& (A21 

Expanding the plane waves into cubic harmonics using the Bessel functions j1 yields 
where T is the translation vector. 

inside the reconstruction sphere of the basis atom at Ro: 

Appendix B 

In this appendix the calculation of the spherical part V$;(r) of the effective potential given 
by 

is described. 
Because of the spherical charge disttibution, the potential Vi'" generated outside the 

sphere around the entire core by the nuclear charge and by the core charge density n, 
inside the sphere (the first two terms in (Bl)) is identical with the potential generated by 
the ionic pseudopotential outside the sphere. Therefore, the ionic pseudopotential at the 
surface of the sphere (which is provided by the pseudopotential calculation) may serve as 
Dirichlet's boundary condition for the solution of Poisson's equation inside the sphere. It 
should be cautioned, however, that in a pseudopotential calculation a homogeneous negative 
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background charge density -@/a,) E, Z," is added to the sum of the nuclear and the 
electronic core charge density, where eZL is the charge of the nucleus plus electronic 
charge and 01 denotes the~basis atoms in the unit cell of volume a,. This homogeneous 
background density compensates the average positive nuclear and electronic core density 
n, which would generate a singular potential everywhere. Analogously, a homogeneous 
positive background charge density of the same magnitude is addedto the electronic valence 
charge density n, to compensate the average negative valence charge density. In order to 
match the potentials inside the sphere correctly to those at the sphere boundary obtained by 
the pseudopotential calculation, we must add the same background charge densities also for 
the solution of Poisson's equation inside the sphere during the reconstruction, i.e. we must 
solve Poisson's equation 

The whole procedure, however, is only meaningful if the sphere includes all the core charge 
density. Because the extension of the ionic core in many cases is larger than the maximum 
rc,t and hence larger than r,,,, it is necessary to use a sphere with a sufficiently large radius 
rmarch for the calculation of Van. 

For frozen cores the potential V"'" has to be calculated only once at the beginning of 
the whole reconstruction cycle. In contrast, VH[n,] must be evaluated for each iteration 
step from the valence elecbon density of the preceding step. Again, VH[n,] is determined 
by solving Poisson's equation 

subject to appropriate boundary conditions determined by the pseudopotential calculation. 
The Hartree potential at the surface of the sphere thereby is determined by the valence charge 
density in the sphere and outside the sphere. Outside the spheres the pseudowavefunction 
is identical with the true wavefunction and thus yields the same contribution to the Hartree 
potential at the surface. Inside the sphere the corresponding charge densities are different, 
yielding different potentials. However, because the number of electrons in the sphere 
is conserved in the pseudopotential calculation, the monopole contribution V?=O of the 
representation of VH in terms of cubic harmonics, which defines the spherically averaged 
potential V$'[n,], is also conserved. This quantity therefore is calculated from the I ,  m = 0 
part of Poisson's equation (B3) with the Z,m = 0 component of the Hamee potential 
obtained by the pseudopotential calculation as Dirichlet's boundary condition. 

The exchange-correlation potential V,,[n, +nu] is directly calculated at any site. 
Altogether, the spherically averaged effective potential V$;(r) in the sphere 01 is given 

with 



Appendix C 

From equation (26) the following expressions for the tensor V, are obtained 

- &K=(P'))d3r' 
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